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On the Convergence of a Time Discretization Scheme 
for the Navier-Stokes Equations* 

By T. Geveci 

Abstract. A linearized version of the implicit Euler scheme is considered for the approx- 
imation of the solutions to the Navier-Stokes equations in a two-dimensional domain. 
The rate of convergence in the Hl-norm is established. 

1. Introduction. We are concerned with the discretization in time of the 
Navier-Stokes equations in a bounded two-dimensional domain: 

aut (t, x) - u(t, x) + Vp(t, x) + (u V)u(t, x) = O, x EQ, t> O, 
(.) div u(t,x) =O0, xeQ, t>O, 

u(t, x) = 0, x E a), t > 0, 

U(O,X) = UO(X), x E U. 

Here, u(t,x) = (u1(t,x),u2(t,x)) is the velocity, p(t,x) is the pressure, Q is a 
bounded domain in R2 with smooth boundary aQ, and uo is the initial velocity 
field. 

As in Fujita and Kato [5], [15] and Temam [24], we cast (1.1) as an evolution 
equation in the appropriate Hilbert space: 

7 = {v = (vl,v2): v1,v2 E Co?'(2), divv = O}; 
H = closure of %"' in L2'2 (Q), the space of R2-valued functions, each component 

of which is in L2 (Q), equipped with the inner product 

(u,v) = Eui (x)vi (x) dx 

and the induced norm Ilull = (u) u)1/2 
V = closure of %"' in H'2 (Q), the Sobolev space of R2-valued functions, each 

component of which is in Ho' (Q), equipped with the inner product 

(u,v) =f | E JU " 6Vt dx 
i,j=1 jtx 

and the induced norm llull1 = (u,)u)1/2. 
Similarly, the spaces HI 2 (Q) and the norms are defined in terms of the 

standard Sobolev sDaces. 
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We let P: L2,2 (Q) -+ H denote the orthogonal projection and define the Stokes 
operator A: D(A) c H -- H, D(A) = V n H2'2(Q2) by Au = -PAu, u E D(A). 
We note that llull, and jjA8/2uj1 are equivalent, u E D(A-/2), 0 < s < 2 [7]. 

Within this framework, (1.1) is expressed as the evolution equation in H: 
u(t) E D(A), t > 0, and 

(1.2) dd (t) + Au(t) + B(u(t), u(t)) = 0, t > 0, u(0) = uo, 

where B(u, v) = P(u. V)v. 
The application of a linearized version of the implicit Euler scheme to (1.2) 

determines the sequence Uk,, E D(A), n = 0,1, 2,. .., such that 

(1.3) atUk,n + AUk,n + B(Uk,n-1I Uk,n) 0, n = 1, 2,..., Uk,O = UO, 

where k > 0 is the time step and 

- Uk,n -Uk,n-1 
atUkn= k - 

k 

We will establish the following result: 

THEOREM. If uo E D(A) and t = nk, then 

(1.4) llUk,n - u(t)ji <? e-/t k 

for k < ko, where C, 6 and ko are positive constants depending on the data uo and 
Q only. 

Here and in the sequel, C, 6 and ko will denote possibly different constants which 
depend only on the data. This convention renders the proofs of results such as the 
above theorems more readable. In any case, the interested reader should have no 
difficulty in tracing the dependence of the various constants on the data. 

The above result parallels results pertaining to the approximation by the implicit 
Euler scheme of the analytic semigroup generated by the positive definite selfadjoint 
operator A, as discussed, for example, by Fujita and Mizutani [6] and Thomee [25]. 

The convergence in the L2-norm of the scheme described by (1.3) has been 
discussed by Girault and Raviart [8]. They have established the L2-convergence of 
the scheme in terms of the smoothness properties of the solution. Under the same 
conditions as in the theorem, and using the same techniques, we are able to show 
that 

(1.5) lluk,n - u(t)ll < Ce-Stk, t = nk, 

for k < ko, where C,6 and ko are positive constants depending on the data uo 
and Q only. We do not include the proof since it is straightforward, once (1.4) is 
established, and (1.5) is not sufficiently novel. 

Earlier, Temam [22] derived a priori bounds for the scheme (1.3) and concluded 
qualitative convergence without a convergence rate in weak norms. Rannacher [19] 
gave O(At)-error estimates for the explicit Euler scheme. Recently, Heywood and 
Rannacher [12] obtained local and global O(At2)-error estimates for the Crank- 
Nicolson scheme under realistic assumptions concerning the smoothness of the so- 
lution. It is relatively easier to establish the rate of convergence of higher-order 
schemes by assuming the solution to be sufficiently regular. However, as has been 
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emphasized by Heywood and Rannacher in a series of papers [9], [10], [11], [12], and 
discussed also by Rautmann [21] and Temam [23], [24], such regularity assumptions 
may entail global compatibility conditions which are not met or which are not veri- 
fiable, in general. Higher-order results as in [2], [8] and [16] involve such conditions, 
and future work should attempt to clarify whether the anticipated orders of such 
schemes are realized under realistic assumptions on the data. 

Our approach is based on the Fujita-Kato approach to the Navier-Stokes equa- 
tions [5], [15], and has been inspired by Okamoto's papers [17], [18] on the spatial 
discretization of (1.2). We have not considered fully discrete schemes since the 
technicalities, which are considerable, vary depending on the spatial discretization 
schemes that are utilized, and may obscure the essential goal of the paper, i.e., the 
demonstration of the convergence of the linearized implicit Euler scheme (1.3) at 
the predicted rate for uo E D(A). By the same token, we have not included nonho- 
mogeneous boundary data or a forcing term in (1.1). Under appropriate technical 
assumptions, the basic result (1.4) may be extended to the nonhomogeneous cases. 
If Q C R3, the counterpart of our theorem may be established over a time interval 
(0,T] in which a bound on IIu(t)I1i and JIun,k 1ii (t = nk) may be assumed. In the 
2-dimensional case, the required a priori estimates are available for Ilu(t) 1ii and will 
be established in the next section for Ilun,k I1. 

2. Some a priori Estimates. 

LEMMA 1. If {uk,n}n00=o is the solution of the linearized implicit Euler scheme 
(1.3), the following a priori estimates are valid: 

n 

(2.1) IIUk,nII2 + 2 E IIA122uk 112k < hIuo112, n = 1, 2, ... 
j=l 

(2.2) IIA1/2uk,nlI < C(IIAl/2uo Ij Q)e-6t, 0 < k < ko, 

where t = nk, C,6 and ko are positive constants which depend on the data uo 
and U. 

Proof. We form the inner product of (1.3) with Uk,n and obtain 

(2.3) (atUk,n 3Uk,n) + (AUk,n 3uk,n) + (B(Uk,n-1, Uk,n) ,uk,n) = 0. 

Since 

(2.4) (B(uk,n-1, Uk,n), Uk,n) = b(uk,n-1, Uk,mi Uk,n) = 0, 

as in Temam [22, p. 163], and 

(2.5) (atUk,n,Uk,n) = 19tIIUk,nhI + 2 |IaUk,fl I 

as in Thomee [25, p. 157], (2.3) yields 

(2.6) 15tIIUk,n 12 + IIA12 Uk,n11 ? 0, 
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so that 
n 

IlUk,n 112 + 2 EIAI1/2uk,j 1l2 k < lluO1l2, 
j=1 

i.e., (2.1) is established. 
In order to establish the a priori bound (2.2) on IIA'/2uk,n I, we form the inner 

product of (1.3) with AUk,n and obtain 

(T9tUk,n,AUk,n) + IlAuk,n11 + (B(uk,n-1,Uk,n),AUk,n) = 0, 

so that 

(2.7) 2 AtIIA"/2uk,n 112 + IIAuk,n 112 < |IB(uk,n- 1, Uk,n) || IIAuk,n ll 

?< Cj|Uk,n-1 111/2 IIA1/2uk,n-1 111/2 IIA'1/2uk,n 111/2 IlAuk,n 113/2, 

where we have used the inequality 

llVllL4 < ClIVl11/211V111/2, v E H'()Q c R2 

[22, p. 291]. 
Making use of Young's inequality, (2.7) leads to 

IIA'/2uk,n ll2 + kllAuk,n 112 < IIA"/2uk,n- 112 

+ Cklluk,n-1 112 IA"/2 Uk,n-1 112 IA"/2 Uk,n 112, 

and summing over n, using the inequality IIA1/2uk,nhI < CIAuUk,ln 1,we obtain 

IIA1/2Uk,n112 < IIA/2uo112 

(2.8) +Ck |j [IIUk,m 1I21A12 Uk,m-1II -1 112-1]1A/2Uk,m 112. 
m=l 

The inequalities (2.1), (2.8) and the discrete Gronwall lemma, as for example in 
[13], lead to the a priori estimate (2.2). 0 

In addition to the estimates on the solution of (1.2) that we will be able to refer 
to, we will need the following estimate: 

LEMMA 2. If uo E D(A), then 

1A 1/2 Dtu(t)1 <C(IIAuo II, ?) e-6t t > O. 

We omit the proof since it is readily obtainable using the techniques of [5] and 
[18]. 

3. The Error Estimate. In this section we will prove the theorem in Sec- 
tion 1. We will freely use the results of Fujita and Kato [5], [15], Fujita and 
Morimoto [7], Temam [22], [24], and Foias and Temam [4] with regard to the frac- 
tional powers of the Stokes operator A and the properties of the trilinear form 
b(u,v,w) = (B(u,v),w). The a priori estimates that have been established by 
Okamoto [18] for the solution of (1.2) are essential as well. The reader will notice 
the parallels between our treatment of time discretization and Okamoto's treatment 
of spatial discretization. 
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We restate the theorem: 

THEOREM. If uo E D(A) and t = nk, n = 1, 2,. . ., then 

(3.1) IIUk,n - U(t)11 < C(IIAuoII, Q)e"6tk 

Proof. We have 

t 
(3.2) u(t) = e-tAuO - J e-(t-8)AB(u(8), u(s)) ds, t = nk, 

n 

(3.3) Uk,n = Eknuo - Ek j+ B(Uk,j-1,Uk,j)k, 
j=l 

where Ek = (I + kA)', I denoting the identity. 
As in Thom6e [25], 

(3.4) IA/2(Ekn - e-tA)Uo11< C(jlAuo, m)e-6t k 

where, as always, b > 0 also depends on the data. Thus, 

I|A2 (u(t) - Uk,n)II < Ce6t kj+ AI/2t e-(t-,)AB(u(s) u(s)) ds 

(3.5) n 

- A"1/2 E Ekn-j+'B(Uk,j-1 Uk,j)k 

j=l 

We write 
t n 

e-(t,8)AB(u(s), u(s)) ds - E Ekn-7+'B(uk,-1, Uk,j)k 
j=l 

t ~~~~~~n 
(3.6) = e-(t-,)AB(u(s), u(s)) ds -E Ek B(>B l, uj)k] 

L ~~~~~~~j=i 

+ [,Ekn i+ (B(uj -I, uj) - B(Uk,j -Uk,j))]k 

where uj denotes u(jk). 
We write the last expression of (3.6) as 

n 

Ekn j+l (B(uj - uj) -B(Uk,j- Uk,j))k 
j=l 

n n 

-E Eknj+'B(ujl - Uk,j1, Uj)k + E Ekn j+1B(Uk,j-1, Uj-Uk,j)k 
(3.7) j=i j=1 

n-I n-I 

E Z Ekn jB(uj - Uk,j, uj+,)k + j Ekn-j+ 'B(uk,j-, Uj - uk,j)k 
j=l j=1 

+ EkB(uk,n-i,un - Uk,n)k, 
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since Uk,O = Uo. We have 

ttA"/2EkB(uk,n-l,Un - Uk,n)ttk 

(3.8) = IIA3/4EkA- 1/4B(Uk,n i Un - Uk,n) ll k 

< C IIA' /4uk,n.1 1 IIA1/2(un -Uk,n)IIk < Ck'/4 11A1/2(un -Uk,n) 

thanks to the estimate (2.2) on IIA1/2 Uk,ntt. 
We consider next 

n-1 
Z IjA1/2Ek -jB(uj - Uk,j, Uj+i)tIk 

j=l 

n-1 

E IA 1A3/4Ek -A-1/4B(uj - Uk,j, uj+) lIlk 

(3.9) j=i 
n-i elkS 

< Ce , (nk - jk 3/4 IjA'/4(Uj - Uk,j) II IIA1/2uj+l Ilk 

n-i eikb 
? Ce-6t 1i (nk - jk)3/4 IIA/2(Uj - Uk,j)ltk, 

j= 

by virtue of the estimate (2.2) on IIA1/2unll. 
Similarly, 

n-I 

E ttAl/2Ek -j+'B(uk,j_l, Uj - Uk,j) llk 

(3.10) nii 

< CeC6t 1 (nk - jk)3/4 IIA1/2(uj - Uk,j)lIk. 
j=1 

From (3.5), (3.6), (3.7), (3.8), (3.9) and (3.10) we obtain, for sufficiently small k, 

ebtIA1/2 (Un - Uk,n) II < t2+ C = (t - jk)3/4 IjA1/2(uj - Uk,j)Ilk 

t 

(3.11) + et A1/2] e-(t-,)AB(u(s), u(s)) ds 

n 
- Al/2 EEkn-j+'B(uj-l, uj)k. 

j=i 

Thanks to a generalization of Gronwall's lemma as in Okamoto [181 and Amann 
[1], the theorem will be established once we show that 

A1/2 t e-(t-8)AB(u(s), u(s)) ds - A1/2 Ek 
- 

B( (uj, uj)k 
(3.12) Jo 

Ce-6t 
wl kv 



THE CONVERGENCE OF A TIME DISCRETIZATION SCHEME 49 

We write 

t n 
j e(t-8)AB(u(s), u(s)) ds -E Ekn -1B (uj_, uj)k 

j=1 
t 

- / e-(t-8)A (B(u(s), u(s)) - B(u(t), u(t))) ds 

(3. 13) n 
(I Ek7-+l (B(uj- 1 uj) - B(u(t), u(t)))k 

j=l 

t n 
+ I e-(t-s) A En-i+ 1k] B(u(t), u(t)). 

We will deal with the last line of (3.13) first. As in Kato [14, p. 489], 

t 
(3.14) e- (t-s)A ds = (I _ e-tA )A-1. 

It is also easily verified that 

n 
(3.15) EEk-j 1k = (I - Ek)A-. 

j=1 

By (3.14) and (3.15), 

A1/2 [t e-(t-s)A - E +lk] B(u(t),u(t)) 

(3.16) /2(k ACeSbt 
(3A) = -A12(E-etA)A-1B(u(t),u(t))jj < 1l2 IIB(u(t),u(t))IIk 

< t1/2 jjAu(t)j Jj1 A/2U(t) jlk < (t1/2ll e)-,6t 

thanks to the error estimates on the approximation of exp(-tA) as in Thomee [25] 
and the a priori estimates established by Okamoto [18]. 

By (3.13) and (3.16), the inequality (3.12) will be established once we estimate 

I't 

A1/2 J e(t-8)A (B(u(s), u(s)) - B(u(t), u(t))) ds 

n 
-E n-j+1 (B (uj_ - uj)-B(u(t), u(t)))k 

j=1 
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To this end, we write 

e-(t-s)A(B(u(s), u(s)) - B(u(t), u(t))) ds 

n 

-E Ek-j+'(B(uj I, uj) - B(u(t), u(t)))k 
j=1 

n jk 
= [e-(t-8)A _ e-(t-(j-l)k)AI (B(u(s), u(s)) - B(u(t), u(t))) ds 

(3.17) j=1 (j-1)k 
n rik 

+ 1 J e"""(t~ -(j-l)k)A (B(u(s), u(s)) - B(uj-l, uj)) ds 
=I j(i-)k 
n 

+ [e-(t-(i-l)k)A _ Ek'-('i (B(ujj, Uj) - B(u(t), u(t)))k 
j=1 

-II + I2 T I3 

We will establish that 

Ce-6t 
(3.18) IIA"/2I 11< t1/2 k, I = 1,2,3, 

and this will conclude the proof. 
In order to estimate IjA1/2I1 1j we first note that 

e- (t-s)A - e-(t-(j-l )k)A =e- (t-s)A _ e- (t-s)A e- (,-(j-l)k)A 

e (t 8)A[I -e-(s-(-l)k)AI 

for s E [(j - 1)k,jk). Therefore, 

IIA112[e-(t-s)A - e-(t-(j-l)k)AIGII 

-= 11A3/2e-(t-s)AA-' (I - e(s(i )k)A )GII 
(3.19)Cebts 

< (t - 873/2 jIGjjk, s E [(j - 1)k,jk), 

as in Crouzeix and Thom6e [3, proof of Theorem 1]. 
Making use of Lemma 2 and [181, 

jIB(u(s), u(s)) - B(u(t), u(t))jI < CjjAu(t)jI IIA'/2(u(s) -u(t))jj 
(3.20)(t-) 

< C(jlAuoll, f)e-6 (t1/2 

Equations (3.17), (3.19) and (3.20) yield 

n rJk 1 

(3.21) j=A1211jj ? Cejtf )k (t - 

= Ce-t f (t -1/21/2 ds < Ce-7tk. 
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In order to estimate jjA1/212 II, we write 

k 

I2 = f etAB(u(s), u(s)) ds - e-tAB(uo, ul)k 

n 3jk 

(3.22) + f e-(t (jil)k)AB(u(s) - Uj u(s)) ds 

n 3jk 
+ /E | e-(t- (j-l)k)AB(uj-i, u(s) - uj) ds. 

i=2 (-1)k 

We first observe 

Ce"""t 1/U.)1IA()I C(jjAuojj1, ?2)e"""t 
IIA 1/2e-tA B(u (s) ,u (s)) 11< t1/2 IIAl/usllA()l 1 t1/l2) 

so that 

(3.23) A"1/2 e-tAB(u(s), u(s))d-9 < ds k 

Similarly, 

(3.24) 11A112B(uo,ui)IIk <?tl/2 k. 

By (3.22), (3.23) and (3.24) the result (3.18) for I = 1 will have been established if 
such an estimate is proven for the remaining terms of (3.22). It will suffice treating 

Al /2 E e-(t-(jl)k)A B (u (s) - uj_, u (s)) ds 

since the last term is treated in a similar manner. 
For j = 2,3, ..., n, s E [(j-1)k, jk), 

JJA1/2 e-(t-(j-1)k) B(u(sq) - 
uj-1, u(s)) I 

Ce-te 6( j-l)k 

(3.25) (t - (j - 1)k)1/2 IIAu(s) IA112 (u(s)- 

Ce-6tk 

(t - (j - 1)k)1/2((j -1)k)1/2' 

again by [18] and Lemma 2. 
By (3.25) we have 

Al /2 E e (t(jl)k)A B (u (s) - uj1, u (s)) ds 

(3.26) < Ce-6tk (t - (j- 1)k)1/2(( -1)k)1/2) 

< Ce-6tk ( - 1 ds < Ce-6tk. 
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The last line of (3.22) is treated similarly, and we are left with the task of estimating 

11A1/2I3 11. We write 

I3 = [e-tA - Ek ](B(uo, ul) - B(u(t), u(t)))k 
n 

+ Z[e(t-(j-l)k)A _ E-(j ')]B(ujl - u(t), uj)k 
(3.27) j=2 

n 
+ Z[e(t-(j-l)k)A _ En(j-1)]B(u(t), uj - u(t))k. 

j=2 

Each term of the first line of (3.27) is treated in a similar manner. For example, 

IIA 1/2 EkB(uo, ul)IIk < 
t2 )k< C(IIAuoI, X Qe 1 t k. 

Now, 
n 

S IA1/2 [e-(t-(j-l)k)A _ Ek'-(j-)]B(uj-l -u(t),uj)llk 
j=2 

n 
Ce-6(t-(j-l)k) k <E (t - (j - 1)k)3/2 IIB(uj-l - u(t), uj)Ilk 

n Ce-6(t-(j-1)k) k (-jlk 6k (3.28) ? j C-((i)) IA1'J2 (up.i1 - u(t))II IIAujlIlk 
=2(t - (j -1k32 

n 
e6(`(ji1)k)k (t - (j - 1)k)e6k 

=2 (t -(j - 1)k)3/2 ((j - 1)k)l/2 

= CeJ(tk (t - (j - 1) k) l/2 ((j - 1) k) l/2 k) < Ce 6tk, 

again by [18], [25] and Lemma 2. 
The last line of (3.27) is handled similarly and (3.18) is established for I3 

as well. As anticipated earlier, we thus conclude the proof of the theorem since 
IA'/2 (u(t) - un,k)II is equivalent to IIu(t) - un,k I I, as in [7]. o 

4. Concluding Remarks. Our results are incomplete, just as those of [18], 
in that the rate of convergence has not been established for uo, which is merely 
assumed to be in H, even though the solution exists for any u0 E H [13] since 
Q C R2. It is of interest to consider this more general situation. From the practical 
standpoint it is perhaps of greater interest to establish higher-order convergence, 
at least for uo E D(A), as we mentioned at the beginning. 
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